Planta Med 2010; 76(6): 644-647
DOI: 10.1055/s-0029-1240624
Natural Product Chemistry
Letters
© Georg Thieme Verlag KG Stuttgart · New York

Large-Scale Isolation of Flavonolignans from Silybum marianum Extract Affords New Minor Constituents and Preliminary Structure-Activity Relationships

Arlene Sy-Cordero1 , Tyler N. Graf1 , Yuka Nakanishi1 , Mansukh C. Wani1 , Rajesh Agarwal2 , David J. Kroll3 , Nicholas H. Oberlies1
  • 1Natural Products Laboratory, Research Triangle Institute, Research Triangle Park, North Carolina, USA
  • 2Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado, USA
  • 3Department of Pharmaceutical Sciences, BRITE, North Carolina Central University, Durham, North Carolina, USA
Further Information

Publication History

received April 8, 2009 revised October 21, 2009

accepted October 24, 2009

Publication Date:
25 November 2009 (online)

Preview

Abstract

The gram-scale isolation of the major flavonolignan diastereoisomers from milk thistle (Silybum marianum) extract provided an entree into the isolation of two related analogues that are present in extremely minute quantities. The isolation and structure elucidation of these two new compounds, which we have termed isosilybin C and isosilybin D due to their structural similarities to isosilybin A and isosilybin B, respectively, afforded a preliminary analysis of structure-activity relationships toward prostate cancer growth, survival, and apoptotic endpoints.

References

Ph.D. Nicholas H. Oberlies

Department of Chemistry and Biochemistry
University of North Carolina at Greensboro

P. O. Box 26170

435 Sullivan Science Building

Greensboro, NC 27402–6170

USA

Phone: + 1 33 63 34 54 74

Fax: + 1 33 63 34 54 02

Email: Nicholas_Oberlies@uncg.edu